Membrane hyperpolarization during human sperm capacitation.
نویسندگان
چکیده
Sperm capacitation is a complex and indispensable physiological process that spermatozoa must undergo in order to acquire fertilization capability. Spermatozoa from several mammalian species, including mice, exhibit a capacitation-associated plasma membrane hyperpolarization, which is necessary for the acrosome reaction to occur. Despite its importance, this hyperpolarization event has not been adequately examined in human sperm. In this report we used flow cytometry to show that a subpopulation of human sperm indeed undergo a plasma membrane hyperpolarization upon in vitro capacitation. This hyperpolarization correlated with two other well-characterized capacitation parameters, namely an increase in intracellular pH and Ca(2+) concentration, measured also by flow cytometry. We found that sperm membrane hyperpolarization was completely abolished in the presence of a high external K(+) concentration (60 mM), indicating the participation of K(+) channels. In order to identify, which of the potential K(+) channels were involved in this hyperpolarization, we used different K(+) channel inhibitors including charybdotoxin, slotoxin and iberiotoxin (which target Slo1) and clofilium (a more specific blocker for Slo3). All these K(+) channel antagonists inhibited membrane hyperpolarization to a similar extent, suggesting that both members of the Slo family may potentially participate. Two very recent papers recorded K(+) currents in human sperm electrophysiologically, with some contradictory results. In the present work, we show through immunoblotting that Slo3 channels are present in the human sperm membrane. In addition, we found that human Slo3 channels expressed in CHO cells were sensitive to clofilium (50 μM). Considered altogether, our data indicate that Slo1 and Slo3 could share the preponderant role in the capacitation-associated hyperpolarization of human sperm in contrast to what has been previously reported for mouse sperm, where Slo3 channels are the main contributors to the hyperpolarization event.
منابع مشابه
Flow cytometry analysis reveals that only a subpopulation of mouse sperm undergoes hyperpolarization during capacitation.
To gain fertilizing capacity, mammalian sperm should reside in the female tract for a period of time. The physiological changes that render the sperm able to fertilize are known as capacitation. Capacitation is associated with an increase in intracellular pH, an increase in intracellular calcium, and phosphorylation of different proteins. This process is also accompanied by the hyperpolarizatio...
متن کاملControl of the low voltage-activated calcium channel of mouse sperm by egg ZP3 and by membrane hyperpolarization during capacitation.
Sperm adhesion to egg zonae pellucidae initiates sperm acrosome reactions, an exocytotic event that is an early step during fertilization. Previously, it was suggested that zona pellucida-evoked Ca2+ entry into sperm through low voltage-activated Ca2+ channels is an essential step in acrosome reactions, based on the inhibitory effects of Ca2+ channel antagonists. However, analysis of this chann...
متن کاملFlow cytometry analysis reveals a decrease in intracellular sodium during sperm capacitation.
Mammalian sperm require time in the female tract in order to be able to fertilize an egg. The physiological changes that render the sperm able to fertilize are known as capacitation. Capacitation is associated with an increase in intracellular pH, an increase in intracellular calcium and phosphorylation of different proteins. This process is also accompanied by the hyperpolarization of the sper...
متن کاملIon Permeabilities in Mouse Sperm Reveal an External Trigger for SLO3-Dependent Hyperpolarization
Unlike most cells of the body which function in an ionic environment controlled within narrow limits, spermatozoa must function in a less controlled external environment. In order to better understand how sperm control their membrane potential in different ionic conditions, we measured mouse sperm membrane potentials under a variety of conditions and at different external K(+) concentrations, b...
متن کاملIntracellular calcium-dependent regulation of the sperm-specific calcium-activated potassium channel, hSlo3, by the BKCa activator LDD175
Plasma membrane hyperpolarization associated with activation of Ca2+-activated K+ channels plays an important role in sperm capacitation during fertilization. Although Slo3 (slowpoke homologue 3), together with the auxiliary γ2-subunit, LRRC52 (leucine-rich-repeat-containing 52), is known to mediate the pH-sensitive, sperm-specific K+ current KSper in mice, the molecular identity of this channe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular human reproduction
دوره 20 7 شماره
صفحات -
تاریخ انتشار 2014